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Abstract
We consider a massive relativistic particle in the background of a gravitational
plane wave. The corresponding Green functions for both spinless and spin- 1

2
cases, previously computed by Barducci and Giachetti (2005 J. Phys. A: Math.
Gen. 38 1615), are reobtained here by alternative methods, as for example, the
Fock–Schwinger proper-time method and the algebraic method. In analogy
with the electromagnetic case, we show that for a gravitational plane-wave
background a semiclassical approach is also sufficient to provide the exact
result, though the Lagrangian involved is far from being a quadratic one.

PACS numbers: 03.65.Ca, 03.65.Db, 02.20.−a

1. Introduction

Green functions are basic ingredients in quantum theories. Particularly, they are of great
importance in the computation of scattering amplitudes, as well as atomic energy levels.
However, only a few exact results for Green functions of relativistic particles or even non-
relativistic ones under the influence of external fields are available in the literature. Of
particular importance, among the methods of obtaining Green functions is the so-called
Fock–Schwinger method. It was introduced in the context of relativistic quantum field in
1951 by Schwinger [2]. It has since been employed mainly in relativistic problems such as
the calculation of bosonic [3] and fermionic [4–7] Green functions in external fields. The
most common exact solutions found in the literature are those involving the non-relativistic
Coulomb potential [9], the relativistic Dirac–Coulomb potential [10], a constant and uniform
electromagnetic field as well as the electromagnetic field of a linearly polarized plane wave
[2, 11] or even particular combinations of constant fields and plane-wave fields [3, 12].

In the presence of an external gravitational background the problem becomes extremely
complicated and only a few solutions using algebraic techniques or mode summation method
are known. In this context, a simplifying assumption is to consider a weak gravitational
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field. Using the path integral and external source methods it is possible to calculate the
Feynman propagator in the case when the gravitational field is that of a plane wave [13, 14].
Recently, Barducci and Giachetti [1] have considered the wave equations for spin-0 and
spin- 1

2 particles in a weak external plane-wave gravitational field. They obtained for the
wavefunctions Volkov-type solutions [16]. A similar ansatz for the Green functions is verified
to be correct. These results have a resemblance to those for a charged particle in a plane-wave
external electromagnetic field. Since the latter case has been treated in a deductive manner
by the proper-time method [2], it is interesting to apply this technique for the case of a weak
background of a gravitational plane wave.

The purpose of this paper is to provide many alternative methods for computing the
above-mentioned Green functions. This work is organized as follows: in section 2 we obtain
the Green function for a spin-0 massive particle in the presence of a weak background of
a gravitational plane wave by using the Fock–Schwinger method. In section 3, we apply
this same method and obtain the corresponding Green function for a spin- 1

2 particle. Then,
in section 4, we show that these solutions may be constructed in a much simpler manner
by an operator technique. In section 5, we reobtain the bosonic Green function by trying
a convenient ansatz. In section 6, we show that a path integral semiclassical approach is
sufficient to yield the exact results, even though the Lagrangian involved is far from being a
quadratic one. Finally, section 7 is left for conclusions and final remarks.

2. Proper-time method for a scalar particle

In the linear approximation the gravitational field is described by a small perturbation to the
flat metric, namely

gµν(x) = ηµν + hµν(x) gµν(x) = ηµν − hµν(x), (1)

where ηµν is the flat space metric and hµν is a small perturbation. The imposition of harmonic
condition in the linear approximation gives

∂µhµ
ν(x) = 1

2∂νh(x). (2)

It is convenient to choose a restriction of the harmonic gauge and impose the conditions

∂µhµ
ν = 0, h(x) = 0. (3)

Finally, the linearized gravitational field is taken to be the one produced by a wave of arbitrary
spectral composition and polarization properties, but propagating in a fixed direction so that

hµν(x) = aµνF (ξ), (4)

where ξ = n · x and the propagation vector is a light-like one, which satisfies the condition
n2 = 0, and F is an arbitrary function. The conditions imposed on hµν give

nµaµν = 0, Tr a = 0. (5)

We note that linearization implies that terms involving second and higher powers of a are to
be dropped. In the following calculations it may be convenient sometimes not to do this in
the intermediate stages. With these assumptions, the Green function for a scalar particle in a
weak external linearized gravitational field satisfies the equation [13]

[∂µ∂µ − hµν∂µ∂ν + m2]G(x − y) = −δ(x − y), (6)

where hµν(x) is of the form described previously. In order to apply the proper-time method
we write the Green function in the form

G(x ′, x ′′) = −i
∫ ∞

0
ds e−im2s〈x ′| e−isH |x ′′〉, (7)



Relativistic Green functions in a plane-wave gravitational background 9151

where the proper-time Hamiltonian is given by

H = −p2 + pµaµνp
νF (ξ), (8)

with pµ = i∂µ and

[xµ, pν] = −iηµν. (9)

We adopt Schwinger’s notation in which unprimed quantities are used for operators while
primed quantities are used for the corresponding eigenvalues. In this sense, the eigenvalue
equation for the operator xµ is written as

xµ|x ′〉 = x ′µ|x ′〉, (10)

where, for simplicity, we omitted indices in the eigenvector |x ′〉. Next, given an operator O,
we introduce the operator O(s) defined as

O(s) = eisH O e−isH , (11)

which satisfies the Heisenberg-like equation of motion

i
d

ds
O(s) = [O(s),H ]. (12)

Of course, O(0) = O, so that pµ, xµ, etc, mean the same as pµ(0), xµ(0) and so on. Hence,
we have

xµ(s)(eisH |x ′〉) = x ′(eisH |x ′〉), (13)

so that we conveniently define

|x ′s〉 = eisH |x ′〉. (14)

Note that from (9) and (11) we also have

[xµ(s), pν(s)] = −iηµν. (15)

Using this ‘Heisenberg picture’, the Green function can be cast into the form

G(x ′, x ′′) = −i
∫ ∞

0
ds e−im2s〈x ′s|x ′′0〉, (16)

where the ‘Schrödinger-like’ propagator 〈x ′s|x ′′0〉 satisfies the differential equation

i∂s〈x ′s|x ′′0〉 = 〈x ′s|H |x ′′0〉 (17)

submitted to the initial condition

lim
s→0

〈x ′s|x ′′0〉 = δ(x ′ − x ′′). (18)

Schwinger’s method for computing 〈x ′s|x ′′0〉 basically consists in the following steps: (i)
we first solve the Heisenberg equations for operators pµ(s) and xµ(s) and write the proper-
time Hamiltonian in terms of xµ(s) and xµ(0), instead of xµ(0)pµ(0); (ii) then, using the
commutator between xµ(s) and xµ(0) we write conveniently this Hamiltonian in a ordered form
in time s, namely with operators xµ(s) in all terms put on the left-hand side, so that equation (17)
can be immediately integrated in s to yield 〈x ′s|x ′′0〉 = C(x ′, x ′′) exp

{−i
∫ s

F (x ′, x ′′; s ′)ds ′},
where F(x ′, x ′′; s ′) := 〈x ′s|H |x ′′0〉/〈x ′s|x ′′0〉; (iii) finally, the integration constant C(x ′, x ′′)
is obtained by imposing the constraints

〈x ′s|pµ(s)|x ′′0〉 = i
∂

∂x ′
µ

〈x ′s|x ′′0〉

〈x ′s|pµ(0)|x ′′0〉 = −i
∂

∂x ′′
µ

〈x ′s|x ′′0〉
(19)
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as well as the initial condition (18). A pedagogical introduction of Schwinger’s method can
be found in [17–19] (for other applications to non-relativistic problems, see [20–24]).1 The
Heisenberg equations of motion are given by

d

ds
xµ(s) = 2

[
ηµ

ν − aµ
ν F (ξ(s))

]
pν(s) (20)

d

ds
pµ(s) = nµF ′(ξ(s))pα(s)aαβpβ(s), (21)

where in the last equation F ′ means dF/dξ . In order to solve previous equations for xµ(s)

and pµ(s), observe initially that they imply the following ones:

d

ds
ξ(s) = 2nµpµ(s) =: 2n · p(s), (22)

d

ds
(n · p(s)) = 0, (23)

d

ds
(pµ(s)aµνpν(s)) = 0. (24)

Equations (22) and (23) lead to

n · p(s) = ξ(s) − ξ(0)

2s
(25)

and equation (24) allows us to write

pµ(s)aµνp
ν(s) = C, (26)

where C is an operator that does not depend on s. In order to integrate equation (21), we
multiply and divide its rhs by dξ/ds = 2n · p to get

d

ds
pµ(s) =

nµ dF
dξ

dξ

ds
C

2n · p
= d

ds

{
nµF(ξ(s))C

2n · p

}
, (27)

where we omitted the argument s in 2n · p or dξ/ds since these quantities are constants of
motion and used the fact that [n · p, ξ ] = in2 = 0. We also omitted the argument of dF/dξ

and used that C is an s-independent operator. A direct integration of the above equation leads
to

pµ(s) = nµF(ξ(s))C

2n · p
+ Dµ, (28)

where Dµ is a constant operator that satisfies

nµDµ = nµpµ = ξ(s) − ξ(0)

2s
. (29)

For simplicity, from now on, we shall omit indices and a matrix notation will be assumed, so
that the previous equation is written simply as

p(s) = nF

2n · p
C + D. (30)

Two relations involving the constant operators C and D can be written from our previous
results. Inserting (28) into (26) and computing pµpµ from the last equation, we obtain,

1 Schwinger’s method for the non-relativistic oscillator was developed independently by M Goldberger and
M Gellmann in 1951 in the context of statistical mechanics [25].
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respectively,

C = DaD (31)

p2 = D2 + CF. (32)

Hence, from equations (26) and (32), the proper-time Hamiltonian (8) can be written as

H = −D2. (33)

Then, inserting (30) into (20) and integrating in s following a procedure analogous to that used
to obtain p(s), we get

x(s) − x(0) = A(ξ(s)) − A(ξ(0))

2n · p

(
nC

n · p
− 2aD

)
+ 2Ds, (34)

where we defined A by

F(ξ) = dA(ξ)

dξ
. (35)

Solving the previous equation for D, we obtain

D = M
x(s) − x(0)

2s
− nC

2n · p

A(ξ(s)) − A(ξ(0))

ξ(s) − ξ(0)
+ O(a2), (36)

where

M :=
[
I − a

A(ξ(s)) − A(ξ(0))

ξ(s) − ξ(0)

]−1

. (37)

Equations (31) and (36) allow us to write constant C in the form

C = 1

4s2
(x(s) − x(0))aM2(x(s) − x(0)) + O(a2). (38)

Using equations (33) and (36), and keeping terms only up to order a, the proper-time
Hamiltonian in the weak field approximation takes the form

H = − 1

4s2
(x(s) − x(0))M(x(s) − x(0)). (39)

To write the above proper-time Hamiltonian in the appropriate s-ordered form we note the
following commutation relations:

[ξ(0), xµ(s)] = [ξ(s) − 2n · p(s), xµ(s)] = −2inµs, (40)

[Mµλxλ(s), xµ(0)] = 2s

[
Dµ +

Cnµ

2n · p

A(ξ(s)) − A(ξ(0))

ξ(s) − ξ(0)
, xµ(0)

]
= 8is. (41)

Integrating equation i∂s〈x ′s|x ′′0〉 = 〈x ′s|H |x ′′0〉, we get

〈x ′s|x ′′0〉 = 	(x ′, x ′′)
s2

exp
{
− i

4s
(x ′ − x ′′)M(ξ ′, ξ ′′)(x ′ − x ′′)

}
, (42)

where

M(ξ ′, ξ ′′) =
[
I − a

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

]−1

(43)

and 	(x ′, x ′′) is an s-independent quantity to be determined by imposing constraints (19).
Let us impose the first constraint written in (19). To evaluate its rhs we need to compute
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∂ ′〈x ′s|x ′′0〉, while to evaluate its lhs we need the s-ordered matrix element of operator p(s).
Differentiating equation (42), we obtain

i
∂ ′〈x ′s|x ′′0〉
〈x ′s|x ′′0〉 = i

∂ ′	
	

+ M
(x ′ − x ′′)

2s
+

1

4s
(x ′ − x ′′)∂ ′M(ξ ′, ξ ′′)(x ′ − x ′′), (44)

where

∂ ′M(ξ ′, ξ ′′) = n

ξ ′ − ξ ′′

[
F(ξ ′) − A(ξ ′) − A(ξ ′′)

ξ ′ − ξ ′′

]
aM2. (45)

Using the solution for p(s), obtained from equations (30) and (31), a straightforward
calculation yields

∂ ′	(x ′, x ′′) = 0. (46)

A similar calculation gives

∂ ′′	(x ′, x ′′) = 0. (47)

Hence 	(x ′, x ′′) is a constant denoted simply by 	. This constant may be evaluated by
imposing the initial condition (18). However, the explicit calculation is very similar to that
verifying the consistency condition in section 5, so that we avoid it here. The result is given
by

	 = i

(4π)2
. (48)

Collecting all previous results, we finally obtain

G(x ′, x ′′)= 1

16π2

∫ ∞

0

ds

s2
e−im2s exp

{
− i

4s
(x ′ − x ′′)

[
I − a

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

]−1

(x ′ − x ′′)

}
.

(49)

As expected, if we take in the above expression the limit a → 0, we recover the well-known
free-particle propagator in the Minkowski space.

3. Proper-time method for a Dirac particle

For a spin- 1
2 particle the Green’s function satisfies the equation(

iγ µ∂ ′
µ − i

2
F(ξ ′)aµνγµ∂ ′

ν − m
)

SF (x ′, x ′′) = δ(x ′ − x ′′), (50)

where γ µ are the usual Dirac matrices. As it is common in problems involving fermion Green
functions in external fields, we conveniently define �F (x ′, x ′′) as follows:

SF (x ′, x ′′) :=
(

iγ µ∂ ′
µ − i

2
F(ξ ′)aµνγµ∂ ′

ν + m
)

�F (x ′, x ′′). (51)

As a consequence, �F (x, y) satisfies a boson-like second-order differential equation, namely(
∂ ′µ∂ ′

µ − F(ξ ′)aµν∂ ′
µ∂ ′

ν +
i

2

dF

dξ ′ σµνn
µaνρ∂ ′

ρ + m2

)
�F (x ′, x ′′) = −δ(x ′ − x ′′), (52)

where σµν = (i/2)[γµ, γν] and we neglected terms quadratic in a. Using the notation
introduced previously, �F (x ′, x ′′) can be written as

�F (x ′, x ′′) = −i
∫ ∞

0
ds e−im2s〈x ′| e−iHs |x ′′〉 = −i

∫ ∞

0
ds e−im2s〈x ′s|x ′′0〉, (53)
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where now the corresponding proper-time Hamiltonian can be written in the form

H = −p2 + papF(ξ) +
1

2
paσn

dF(ξ)

dξ
, (54)

where we are following the same notation as before, namely primed quantities are eigenvalues
while unprimed ones are operators. In writing the last equation we also used the fact that
[pap, F (ξ)] = 0 and [paσn, dF(ξ)/dξ ] = 0.

From now on, whenever it does not cause any confusion, we shall omit the argument
s from the operators involved as well as the argument of F and its derivatives dF/dξ and
d2F/dξ 2. With this in mind, the Heisenberg equations of motion for the operators x and p are
given, respectively, by

dx

ds
= 2(I − aF)p − 1

2
aσn

dF

dξ
, (55)

dp

ds
= n

(
pap

dF

dξ
+

1

2
paσn

d2F

dξ 2

)
. (56)

In this case, the constants of motion are

n · p = ξ(s) − ξ(0)

2s
, (57)

C1 = pap, (58)

C2 = paσn. (59)

Integrating the equation of motion for p we have

p(s) = n

2n · p

(
C1F +

1

2
C2

dF

dξ

)
+ Df , (60)

where Df is a constant. For future convenience, we use the previous equation to write p2 in
the form

p2 = D2
f + C1F +

1

2
C2

dF

dξ
, (61)

where we used the fact that n · p = n · Df . Substituting equation (60) into the Heisenberg
equation (55) and integrating in s, we obtain, after some convenient rearrangement,

Df =
[
I − a

A(ξ(s)) − A(ξ(0))

ξ(s) − ξ(0)

]−1
{

x(s) − x(0)

2s

}
+

1

4
aσn

F(ξ(s)) − F(ξ(0))

ξ(s) − ξ(0)

− n

2n · p

[
C1

A(ξ(s))−A(ξ(0))

ξ(s)− ξ(0)
+

1

2
C2

F(ξ(s))−F(ξ(0))

ξ(s)− ξ(0)

]
+O(a2). (62)

Since nµaµν = 0, and keeping only terms up to first order in a, constants C1 and C2 are given,
respectively, by

C1 = Df aDf =
(

x(s) − x(0)

2s

)
a

(
x(s) − x(0)

2s

)
+ O(a2) (63)

C2 = Df aσn =
(

x(s) − x(0)

2s

)
aσn + O(a2). (64)
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From equations (54) and (61), the proper-time Hamiltonian for the case of a Dirac particle is
given by

H = −D2
f , (65)

which, in the linear approximation (weak gravitational field), can be written as

H = −
(

x(s) − x(0)

2s

)[
I + a

A(ξ(s)) − A(ξ(0))

ξ(s) − ξ(0)

] (
x(s) − x(0)

2s

)
. (66)

One may repeat the steps followed in the previous section to get

〈x ′s|x ′′0〉 = 	(x ′, x ′′)
s2

exp

{
− i

4s
(x ′ − x ′′)

[
I + a

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

]
(x ′ − x ′′)

}
, (67)

where 	(x ′, x ′′) is to be determined. The constraints to be satisfied are the same as in the
previous case, namely 〈x ′s|p(s)|x ′′0〉 = i∂ ′〈x ′s|x ′′0〉 and 〈x ′s|p(0)|x ′′0〉 = −i∂ ′′〈x ′s|x ′′0〉.
The first constraint leads to

∂ ′	 =
[
∂ ′ 〈C2〉

4n · p
(F(ξ ′) − F(ξ ′′))

]
	, (68)

where

〈C2〉 := 〈x ′s|C2|x ′′0〉 = (x ′ − x ′′)
2s

aσn + O(a2). (69)

Hence, we can write

	(x ′, x ′′) = χ(x ′′) exp

{
s〈C2〉(F (ξ ′) − F(ξ ′′))

2(ξ ′ − ξ ′′)

}
, (70)

where the x ′′-dependence on χ(x ′′) is determined by the second constraint written previously.
The imposition of this second constraint leads to the differential equation ∂ ′′χ = 0, so that χ

is a constant, denoted by C0:

	(x ′, x ′′) = C0 exp

{
s〈C2〉(F (ξ ′) − F(ξ ′′))

2(ξ ′ − ξ ′′)

}
. (71)

As before, we evaluate the remaining constant C0 by taking the limit s → 0 and the final result
for �F (x ′, x ′′) is written as

�F (x ′, x ′′) = 1

16π2

∫ ∞

0

ds

s2
e−im2s exp

{
− i

4s
(x ′ − x ′′)

[
I + a

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

]
(x ′ − x ′′)

}

× exp

{
(x ′ − x ′′)aσn(F (ξ ′) − F(ξ ′′))

4(ξ ′ − ξ ′′)

}
. (72)

The desired fermionic Green function is then obtained by inserting the last expression into
equation (51).

4. Green functions by operator techniques

In this section we show that using operator techniques one can obtain the Green functions in
a simple manner. We were motivated by successful calculations previously made for Green
functions of relativistic charged particles in similar external electromagnetic fields [7, 8].
We shall start by discussing the case of a scalar particle. The essential idea is to start with
expression (16) for the Green function, namely G(x ′, x ′′) = −i

∫ ∞
0 ds e−im2s〈x ′s|x ′′0〉 and

then relate by an algebraic method the expression of Schrödinger-like propagator 〈x ′s|x ′′0〉
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for the problem containing the interaction with the corresponding one for the free case, denoted
by 〈x ′s|x ′′0〉0. For the scalar particle we note that

p2 − papF(ξ) = S0p
2S0

−1, (73)

where we defined the operator S0 by

S0 = exp

[
−i

papA(ξ)

2n · p

]
(74)

and used the well-known relation for operators A and B

eAB e−A =
∑

n

Cn where C0 = B and Cn+1 = [A,Cn]. (75)

As a consequence, we have

〈x ′| eis(p2−papF)|x ′′〉 = 〈x ′|S0 eisp2
S0

−1|x ′′〉
= 〈x ′| eisp2(

e−isp2
S0 eisp2)

S0
−1|x ′′〉

= 〈x ′s|S0(s)S0(0)−1|x ′′0〉0, (76)

where we conveniently inserted the identity operator eisp2
e−isp2

and the meaning of the
subscript 0 is such that

〈x ′s|x ′′0〉0 = i

(4πs)2
e−i (x′−x′′)2

4s . (77)

Inserting (74) into (76), a straightforward calculation leads to the matrix element

〈x ′s|x ′′0〉 = 1

(4πs)2
exp

{
− i

4s
(x ′ − x ′′)

[
I + a

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

]
(x ′ − x ′′)

}
(78)

as an exact result. It is also the same as that found by the proper-time method in the small
a approximation. This is curious. Perhaps the reason is that we have imposed very few
restrictions on a. In the case of the electromagnetic field the tensor fµν and its dual have
special properties which allow simplifications. The other difference is that the proper-time
equations of motion are nonlinear.

For the Dirac particle we may proceed in an analogous way. For this purpose, we now
define operator S as

S = exp

[
i

4

paσn

n · p
F(ξ)

]
. (79)

Using the BCH-like relation (75) it is straightforward to show that

p2 − papF(ξ) − i

2
paσn

dF

dξ
= S(p2 − papF(ξ))S−1. (80)

Note that operator S eliminates the interaction term containing explicitly the Dirac matrices.
To reduce further the remaining term can be done with the aid of operator S0, introduced
before for the spinless particle. Hence, we obtain for the Dirac case, the analogous expression
of equation (76), namely

〈x ′| exp

{
is

[
p2 − papF(ξ) − i

2
paσn

dF

dξ

]}
|x ′′〉 = 〈x ′s|S(s)S0(s)(S(0)S0(0))−1|x ′′0〉0.

(81)

Inserting in the previous equation the expressions of S(s), S0(s), S0(0)−1 and S(0)−1 it is not
difficult to obtain the desired Green function for the Dirac particle.
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We close this section by showing an alternative way of employing algebraic methods in
order to obtain the above relativistic Green functions. As we shall see, the present method
leads directly to the Green functions without using the proper-time method.

Starting with the spin-0 case, we have

G(x ′, x ′′) = 〈x ′|G|x ′′〉, (82)

where

G = (p2 − papF(ξ) − m2)−1 = S0(p
2 − m2)−1S0

−1, (83)

with operator S0 defined by equation (74). Hence, we can write

GF (x ′, x ′′) = S0(i∂
′)

∫
d4p

(2π)4

e−ip·(x ′−x ′′)

p2 − m2 + iε
S0

−1(−i∂ ′′) (84)

which leads to the final result

GF (x ′, x ′′) =
∫

d4p

(2π)4

e−ip·(x ′−x ′′)

p2 − m2 + iε
exp

{
−i

pap

2n · p
[A(ξ ′) − A(ξ ′′)]

}
(85)

For the spin 1
2 the Green function SF (x ′, x ′′) is given by

SF (x ′, x ′′) =
(

iγ µ∂ ′
µ − i

2
F(ξ ′)aµνγµ∂ ′

ν + m
)

�F (x ′, x ′′), (86)

where �F (x ′, x ′′) is given by

�F (x ′, x ′′) =
∫

d4p

(2π)4

e−ip·(x ′−x ′′)

p2 − m2 + iε
exp

{
−i

pap

2n · p
[A(ξ ′) − A(ξ ′′)]

}

× exp

{
i

4

paσn

n · p
[F(x ′) − F(x ′′)]

}
, (87)

which agrees with the result obtained in section 3.

5. Ansatz solution for the Green function

In this section, we present an alternative procedure to construct previous Green functions
which is based on a convenient ansatz for the desired solution. We illustrate the method for
the spin-0 particle but a generalization to the spin- 1

2 case can be made without difficulty. The
main motivation for such a procedure is that it worked very well for the case of a relativistic
charged particle under an external electromagnetic field of a plane wave [15]. The desired
Green function satisfies the differential equation

[∂µ∂µ − aµνF (ξ)∂µ∂ν + m2]G(x − x ′) = −δ(x − x ′), (88)

where, for convenience, we are using variables x and x ′ in this section, instead of variables x ′

and x ′′ chosen in the preceding section. Hence, along this section, x is not an operator. As
usual, the Green function can be written as

G(x, x ′) =
∫ ∞

0
ds e−im2s�(x, x ′, s), (89)

where �(x, x ′, s) satisfies the Schrödinger-like differential equation

[i∂s − ∂µ∂µ + aµνF (ξ)∂µ∂ν]�(x, x ′, s) = 0, (90)

subjected to the initial condition

i�(x, x ′, s)
s→0+−→ δ(x − x ′). (91)



Relativistic Green functions in a plane-wave gravitational background 9159

Now, in order to factorize the free-particle solution, we try the following ansatz:

�(x, x ′, s) = �0(x, x ′, s)�(x, x ′, s), (92)

where �0(x, x ′) corresponds to the free-particle solution, that is,

(i∂s − ∂2)�0(x, x ′) = 0, (93)

whose the well-known solution is given by

�0(x, x ′, s) = i

16π2s2
exp

{
−i

(x − x ′)2

4s

}
. (94)

Substituting our ansatz (92) into equation (90), we have

�0i∂s� − 2∂µ�0∂
µ� − �0∂

2� + Faµν (∂µ∂ν�0) �

+ 2Faµν∂
µ�0∂

ν� + Faµν (∂µ∂ν�) �0 = 0. (95)

Since hµν is small, we neglect the last two terms in the above equation and get

�0i∂s� − 2∂µ�0∂
µ� − �0∂

2� + Faµν (∂µ∂ν�0) � = 0. (96)

Next, using that

∂µ�0 = −i
(x − x ′)µ

2s
�0

∂µ∂ν�0 = −i
ηµν

2s
�0 − (x − x ′)µ(x − x ′)ν

4s2
�0,

(97)

equation (96) takes the form[
i∂s − ∂µ∂µ + i

(x − x ′)µ
s

∂µ − F

4s2
(x − x ′)µaµν(x − x ′)ν

]
� = 0. (98)

An inspection of the previous equation suggests us to try a solution of the form

� = exp

{−if (ξ, ξ ′)(x − x ′)µaµν(x − x ′)ν
4s

}
. (99)

In order to substitute the last expression into equation (98), we need

i∂s� = −f
(x − x ′)µaµν(x − x ′)ν

4s2
� (100)

and

∂µ� = − i

4s

[
nµ

df

dξ
(x − x ′)µaµν(x − x ′)ν + 2f aµν(x − x ′)ν

]
�. (101)

Further, we also have

∂µ∂µ� = − 1

16s2

[
nµ

df

dξ
(x − x ′)αaαβ(x − x ′)β + 2f aµα(x − x ′)α

]

×
[
nµ df

dξ
(x − x ′)αaαβ(x − x ′)β + 2f aµα(x − x ′)α

]
�, (102)

where we have used the properties of nµ and aµν , namely n2 = 0 and nµaµν = 0. To the order
of magnitude of our interest we may write

∂µ∂µ� = 0. (103)

Hence, substituting equations (103), (101) and (100) into equation (98), we get

d

dξ
[(ξ − ξ ′)f ] = F. (104)
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We have then

f (ξ, ξ ′) = A(ξ) − A(ξ ′)
ξ − ξ ′ . (105)

where we defined function A by

F = dA

dξ
. (106)

Therefore, equation (92) takes the form

�(x, x ′, s) = i

16π2s2
exp

{
−i

(x − x ′)2 + (x − x ′)µaµν�(ξ)(x − x ′)ν

4s

}

= i

16π2s2
exp

{
−i

(x − x ′)2 + (x − x ′)µaµν
A(ξ)−A(ξ ′)

ξ−ξ ′ (x − x ′)ν

4s

}
. (107)

With the purpose of checking the self-consistency of the result just obtained, not that

lim
s→0+

∫
d4k eikµ(Bµνk

νs−�xµ) = lim
s→0+

exp

{
−i

�xµ(B−1)µν�xν

4s

}
i(π)2

s2
√

det(B)
. (108)

As a consequence, we have

lim
s→0+

i

16π2s2
exp

{
−i

�xµ(B−1)µν�xν

4s

}
= δ4(x − x ′)

√
det(B). (109)

Making the following identifications:(
Bµ

ν

)−1 = δµ
ν + aµ

ν

�A

�ξ
Bµ

ν = δµ
ν − aµ

ν

�A

�ξ

we get

det(B) = 1 + Tr
(
aµ

ν

)A(ξ) − A(ξ ′)
ξ − ξ ′ = 1, (110)

which confirms the initial condition in the parameter s,

i�(x, x ′, s)
s→0+−→ δ(x − x ′). (111)

Inserting expression (107) into equation (89), we obtain the desired Green function, in
agreement with our previous calculations.

6. Semiclassical approximation

As we have seen in many of the previous calculations, relativistic Green functions may be
written in terms of Schrödinger-like propagators, if we introduce appropriately an integration
over the so-called proper-time s. For instance, the Green function for a scalar particle can
be written as GF (x ′, x ′′) = −i

∫ ∞
0 ds e−is(m2−iε)〈x ′s|x ′′0〉 (see equation (7)), where 〈x ′s|x ′′0〉

can be interpreted as a Feynman propagator of an auxiliary problem of a non-relativistic
particle in four dimensions whose dynamics corresponds to the evolution in the parameter s,
which plays the role of time in this auxiliary problem. Once 〈x ′s|x ′′0〉 behaves like a non-
relativistic Feynman propagator, we have at our disposal all techniques developed to compute
this quantity as, for example, the Feynman path integral method. In particular, in the context
of path integrals, it may be convenient to use the semiclassical approximation. It is well known
that whenever the corresponding Lagrangian is quadratic in the coordinates and velocities the
semiclassical result gives the exact result.
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The purpose of this section is to show that if we apply the semiclassical approximation to
the problem at hand (a relativistic particle in a plane-wave gravitational background) we shall
obtain the exact result. At first sight this is an unexpected result, since the Lagrangian of the
corresponding classical problem is far from being quadratic. However, there is a strong reason
that suggests that this will be the case, namely the semiclassical method when applied to the
problem of a relativistic charged particle in an external field of an electromagnetic plane wave
yields the exact result (see, for instance, [26]). Here, we shall discuss only the case of a scalar
particle. To avoid any confusion with the notation, observe that, in this section, all quantities
are not operators, but classical numbers. The semiclassical approximation for the Feynman
propagator 〈x ′s|x ′′0〉 is given by

〈x ′s|x ′′0〉 = 1

(2π i)2

∣∣∣∣ ∂2Scl

∂x ′∂x ′′

∣∣∣∣
1/2

eiScl , (112)

where Scl means the functional action

S(xµ) =
∫ s

0
L(xµ(τ), ẋµ(τ )) dτ (113)

evaluated with the classical solution x
µ

cl , that is, Scl = S(xcl), where xcl satisfies the Euler–
Lagrange equations

d

ds

(
∂L

∂ẋµ

)∣∣∣∣
xµ=x

µ

cl

= ∂L

∂xµ

∣∣∣∣
xµ=x

µ

cl

, µ = 0, 1, 2, 3 (114)

submitted to the Feynman conditions

x
µ

cl(τ = 0) = x ′′µ, x
µ

cl(τ = s) = x ′µ. (115)

Hence, in order to use this approximation, we need to construct the classical Lagrangian
corresponding to the following classical Hamiltonian:

H(x, p) = −p2 + pµhµν(x)pν. (116)

Recalling that pµ = ∂L/∂ẋµ, it is not difficult to show that the corresponding Lagrangian can
be written as

L(x, ẋ) = − 1
4 (ẋµẋµ + ẋµhµν(x)ẋν) = − 1

4gµν(x)ẋµẋν . (117)

The functional action is then given by

S(x) =
∫ s

0

[
−1

4
ẋµ(τ )ẋµ(τ ) − 1

4
ẋµ(τ )aµνẋ

ν(τ )F (n · x(τ))

]
dτ. (118)

The application of Euler–Lagrange equations (114) to the Lagrangian (117) leads to
classical equations completely analogous to the Heisenberg equations discussed in section 2,
but does not forget that here xµ and pµ are not operators. However, exactly the same kind of
solutions is obtained from these equations, so that we just write the classical solution as

x
µ

cl(τ ) = x
µ

cl(0) +

[
nµC

2(n · p)2
− aµνDν

n · p

]
[A(ξ(τ)) − A(ξ(0))] − 2Dµτ, (119)

where C and Dµ are (classical) constants to be determined by imposing Feynman conditions
(115). From the classical version of (38) we have, up to first order in a,

C = 1

4

(x ′ − x ′′)µaµν(x ′ − x ′′)ν
s2

=:
1

4

�xµaµν�xν

s2
, (120)

where we defined �xµ = (x ′ − x ′′)µ.
In order to obtain Dµ, we take τ = s in equation (119) and contract x

µ

cl(s) with nµ and
aµν to obtain, respectively,
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nµ�xµ = −2Dµnµs �⇒ n · D = −�ξ

2s
; (121)

aµν�xν = −2Dνa
µνs, �⇒ aµνDν = −aµν�xν

2s
, (122)

where we defined �ξ = nµ(x ′ − x ′′)µ = ξ ′ − ξ ′′. Substituting these relations into solution
(119) with τ = s, we obtain Dµ in terms of x ′ and x ′′, namely

Dµ = 1

2s

(
nµ �xαaαβ�xβ

2(�ξ)2
+

aµν�xν

�ξ

)
�A − �xµ

2s
, (123)

where we �A := A(ξ ′) − A(ξ ′′). Substituting expressions (120) and (123) into
equation (119), and then differentiating with respect to τ , we obtain the classical velocity
ẋ

µ

cl(τ ) at any ‘instant’ τ in terms of x ′ and x ′′, namely

ẋµ(τ ) =
(

nµ �xαaαβ�xβ

2(�ξ)2
+

aµν�xν

�ξ

)
dA

dτ
− 2Dµ. (124)

Substituting the last equation into the functional action (118) and keeping only terms up to
first order in a, we obtain after a lengthy but straightforward calculation the desired classical
action,

Scl = − 1

4s
�xµ

(
ηµν + aµν �A

�ξ

)
�xν

= − 1

4s
(x ′ − x ′′)µ

(
ηµν + aµν

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

)
(x ′ − x ′′)ν.

Now we need to evaluate the Van Vleck–Pauli–Morette determinant to obtain the pre-
exponential factor of the semiclassical propagator. With this purpose, first note that

∂2Scl

∂x ′
µ∂x ′′

ν

= 1

2s
(ηµν + O(a)). (125)

As a consequence, we have

det

(
∂2Scl

∂x ′∂x ′′

)
= 1

16s4
det(η + O(a)) = 1

16s4
(1 + TrO(a)). (126)

However, note that Tr(O(a)) = O(a2) so that det1/2
(

∂2Scl
∂x ′∂x ′′

) = 1
4s2 + O(a2). Collecting the

previous results and using equation (112) we conclude that, up to first order in a, the Feynman
propagator 〈x ′s|x ′′0〉 in the semiclassical approximation is given by

〈x ′s|x ′′0〉 = 1

16π2s2
exp

{−i

4s
�xµ

(
ηµν + aµν �A

�ξ

)
�xν

}

= 1

16π2s2
exp

{−i

4s
(x ′ − x ′′)µ

(
ηµν + aµν

A(ξ ′) − A(ξ ′′)
ξ ′ − ξ ′′

)
(x ′ − x ′′)ν

}
. (127)

Substituting the last expression into equation (16), we reobtain the correct Green function for
a scalar relativistic particle in the weak gravitational field of a plane wave.

7. Conclusions and final remarks

In this work we have presented a few alternative techniques to calculate Green functions of
relativistic particles under the influence of a weak gravitational field of a plane wave, with
particular attention to the Fock–Schwinger proper-time method. In fact, we started this paper
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by a detailed application of this method in the construction of the Green functions for both
spin-0 as well as spin- 1

2 particles. We showed how these Green functions can be obtained by
algebraic methods in an extremely compact and elegant way. We also showed how to reobtain
these solutions with an appropriate ansatz for the Green function and, finally, we discussed a
semiclassical solution and checked that for the case at hand this approximation is sufficient
to give the exact result. From one hand, this is a surprising result, since the Lagrangian
involved in the solution is far from being quadratic. On the other hand, it could have been
guessed, since a semiclassical approximation yields the exact Green function for a relativistic
charged particle in an external electromagnetic field of a plane wave. The results obtained
here corroborate and complement those of [13].

It should be emphasized that the main purpose of the present work is to provide the
reader with alternative methods of computing Green functions or, better saying, to popularize
some powerful methods of calculation (like Schwinger’s method) that have rarely been used
in the literature. Our emphasis was in great part on the methods themselves and not on
the problems. Though we have not applied the above-mentioned methods to new situations,
we think our calculations may be useful in the study of unsolved problems. Particularly,
the search for other non-quadratic problems whose exact solutions coincide with those
obtained by the semiclassical approximation is an interesting issue. For the problem at
hand, namely relativistic particles in a plane-wave gravitational background, it is difficult to
give a satisfactory explanation why it occurs. What we can say is that, as it happens for
the electromagnetic case, it is due to the peculiarities of a plane-wave field. We think it is
extremely difficult to anticipate whether a semiclassical approach when applied to a non-
quadratic problem will lead to the exact answer. In fact, the number of problems for which
the semiclassical approach yields the exact result is so few that any new problem with this
property is extremely welcome. Maybe after this list of peculiar problems is enlarged enough
we will be able to establish a concrete correlation among them and will finally understand the
ultimate meaning of the semiclassical approach.
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